Pion Form Factor Measurements

Tanja Horn JLab

- Motivation
- F_π measurements
- Summary

Hadronic Form Factors in QCD

- Fundamental issue: quantitative description of hadrons in terms of underlying constituents
 - Theory: Quantum Chromo-Dynamics (QCD) describes strong interactions
 - Degrees of freedom: quarks and gluons

- Studies of the transition between short/long distance scales:
 - Theory Lattice, GPD's, QCD inspired models
 - Experiments form factors, color transparency, quark counting rules, nuclear filtering, duality

Pion Electric Form Factor $F_{\pi}(Q^2)$ and pQCD

- F_{π} can be calculated in pQCD at very high Q², scales ~1/Q²
- F_π can be measured directly from π+e scattering (S.R. Amendolia et al., NP **B277** (1986)) up to Q²~0.3 GeV²
- No "free pion" target to extend measurement of F_{π} to larger Q^2 values use "virtual pion cloud" of the proton

V.A. Nesterenko and A.V. Radyushkin, Phys. Lett. **B115** (1982) 410

P. Maris and P. Tandy Phys Rev C61 (2000)

C.-W. Hwang, Phys Rev **D64** (2001)

Extracting F_{\pi} from Pion Electroproduction Data

The lab cross section can be expressed:

$$\frac{d\sigma}{dEd\Omega_{e}d\Omega_{\pi}} = \Gamma_{v} \mathcal{J}(t, \phi \to \Omega_{\pi}) \frac{d^{2}\sigma}{dtd\varphi}$$

$$\frac{d^2\sigma}{dt\,d\phi} = \frac{d\sigma_{\scriptscriptstyle T}}{dt\,d\phi} + \epsilon \frac{d\sigma_{\scriptscriptstyle L}}{dt\,d\phi} + \sqrt{2\epsilon(\epsilon+1)} \frac{d\sigma_{\scriptscriptstyle LT}}{dt\,d\phi} cos\phi_{\pi} + \epsilon \frac{d\sigma_{\scriptscriptstyle TT}}{dt\,d\phi} cos2\phi_{\pi}$$

• In t-pole approximation:

$$\sigma_{_L} \propto \frac{-t g_{\pi NN}^2(t)}{\left(t - m_\pi^2\right)^2} Q^2 F_\pi^2(Q^2,t)$$

In most analyses F_π is extracted from σ_L data using a model incorporating pion electroproduction (we use VGL/Regge)

Comparison to VGL Model

- F_π was determined by comparing σ_L to a Regge calculation by Vanderhaeghen, Guidal, Laget (VGL, PRC 57(1998)1454)
 - Model parameters fixed from pion photo-production, free parameters: F_{π} and F_{ρ} .

$$F_{\pi} = \frac{1}{1 + Q^2/\Lambda_{\pi}^2}$$

Fit to σ_L to model gives F_{π} at each Q^2

T. Horn et al., Phys. Rev. Lett. 97, 192001 (2006)

$$\Lambda_{\pi}^2 = 0.513, 0.491 \text{ GeV}^2$$

• Note: pQCD calculations predict $\Lambda_{\pi}^2 \sim 0.1$ in this kinematic regime

πCT – pion electroproduction at even higher Q²

- During πCT experiment (see Xin's talk) also took π production data at high and low ε allowing for L-T separation
 - Q²=2.15, 4.0 GeV²
 - Targets: LH², LD², ¹²C, ⁶³Cu,
 ¹⁹⁷Au focus here is on H²,
 further analysis of nuclear
 targets underway

Ехр	Q ²	W	t	E _e
	(GeV²)	(GeV)	(Gev) ²	(GeV)
F _π -1	0.6-1.6	1.95	0.03-0.150	2.445-4.045
F _π -2	1.6,2.45	2.22	0.093,0.189	3.779-5.246
πCT	2.15, 4.0	2.2	0.16-0.44	4.021-5.012

 π CT: higher Q², larger -t

πCT Cross Section Extraction

- Compare experimental yields to Monte Carlo of the experiment
 - Model for H(e,e'π⁺) based on pion electroproduction data
 - Radiative effects, pion decay, energy loss, multiple scattering
 - COSY model for spectrometer optics

$$\sigma_{\text{exp}} = \frac{Y_{\text{exp}}}{Y_{\text{SIMC}}} \sigma_{\text{model}}$$

• Extract σ_L by simultaneous fit using measured azimuthal angle (ϕ_{π}) and knowledge of photon polarization (ϵ) .

$$\frac{d^2\sigma}{dtd\phi} = \epsilon \frac{d\sigma_{L}}{dtd\phi} + \frac{d\sigma_{T}}{dtd\phi} + \sqrt{2\epsilon(\epsilon+1)} \frac{d\sigma_{LT}}{dtd\phi} \cos\phi_{TT} + \epsilon \frac{d\sigma_{TT}}{dtd\phi} \cos2\phi_{TT}$$

πCT – Analysis Issues

- Typically place cut on W/Q² to equalize phase space cannot do this here
- Solution: central W/Q² from geometric mean of high/low ε points

π CT – cross section W-dependence

- σ_{π} depends on W, -t, Q2
- Cross section W-dependence given by: (W²-M²)ⁿ
 - F_π1/F_π2 data suggest that a
 n~2 is appropriate
- πCT data were taken at central W=2.2 GeV
 - Relatively small sensitivity to variations in W, ~1% at Q²=2.15 GeV²

• W-dependence of σ_{π} makes sense – but what about –t and Q2?

πCT – separated cross sections t-dependence

- VGL/Regge describes σ_L reasonably well
 - Fit to the t-dependence allows for extracting F_{π}
- σ_T contributes significantly at Q²=4.0 GeV²
- Interference terms →0 as
 Q² increases

$$\Lambda_{\pi}^2 = 0.518 \text{ GeV}^2$$

Cross Section Models Constraints

- Both VGG/GPD and VGL/Regge models describe the Q² dependence of the data quite well
 - VGG includes a parameterization of Fπ
 - Data will provide a constraint on models at high Q².

T. Horn et al., Phys. Rev. Lett. 97, 192001 (2006)

F_{π} Results including π CT

- πCT new point consistent with previous JLab data
 - Gives confidence in the data analysis
- F_π not asymptotic in this kinematic regime
 - Suggests soft contributions dominate over hard term at accessible Q² values

Hard Scattering Picture

- Factorization: separate soft/hard processes
 - Essential for accessing GPD's in exclusive reactions
- Factorization requirements:
 - σ_L~Q⁻⁶ and σ_T~Q⁻Ց
 - Similar predictions for LT and TT
- Onset of color transparency
- F_π is asymptotic

Scaling Behavior

- Asymptotic scaling predicts
 σ_L~1/Q⁶ and σ_T/σ_L~1/Q²
- Similar ratios for σ_{LT}, σ_{TT}, each transverse term contributes 1/Q

х	σ _∟ fit	σ_T/σ_L fit
0.311	5.11±1.04	-0.89±1.35
0.451	3.77±2.90	2.18±3.19

 Result suggestive, but not sufficient for factorization test - need higher energy – 12 GeV proposal

Compton Scattering Scaling Predictions

M. A. Shupe et al., Phys. Rev. D19, 1921 (1979)

- Expected scaling behavior
 - Fixed θ^* : $d\sigma/dt \sim s^{-n(\theta)}$, $n^{hard(\theta)} = 6$
- Experimental fits are consistent with the prediction within the uncertainty
 - But is this sufficient?

θ	n ^{data}	
60	5.9±0.3	
90	7.1±0.4	
105	6.2±1.4	

Compton Scattering and Soft Contributions

M. A. Shupe et al., Phys. Rev. D19, 1921 (1979)

- Soft contributions can result in deviations from expected scaling behavior (A. Radyushkin, Phys. Rev. D58 (1998) 114008.)
 - Fixed θ^* : $d\sigma/dt \sim s^{-n(\theta)}$, $n^{hard(\theta)} = 6$

θ	n ^{data}	n ^{soft}
60	5.9±0.3	6.1
90	7.1±0.4	6.7
105	6.2±1.4	7.0

Summary

- πCT extends JLab separated pion electroproduction cross section data set to Q²=4.0 GeV²
 - Good agreement between extracted $F\pi$ values gives confidence in data analysis
 - Constraint on models at Q²=4.0 GeV² and higher -t
- F_{π} not asymptotic in this kinematic regime
 - Suggests soft contributions dominate over hard term at accessible Q² values
- Asymptotic scaling tests not sufficient for conclusions on factorization
 - not necessarily un-expected see Compton scattering results
 - need higher energies and longer lever arm 12 GeV proposal